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A minimally invasive surgery robot is difficult to control when actuator saturation exists. In this paper, a Takagi-Sugeno fuzzy
model-based controller is designed for a minimally invasive surgery robot with actuator saturation, which is difficult to
control. The contractively invariant ellipsoid theorem is applied for the actuator saturation. The proposed scheme can be
derived using the H-infinity control theorem and parallel distributed compensation. The result is rebuilt in the form of
linear matrix inequalities for easier calculation by computer. Meanwhile, the uniformly ultimately bounded stable and the
prescribed H-infinity control performance can be guaranteed. The proposed scheme is simulated in a Novint Falcon haptic
device system.

1. Introduction

In minimally invasive robotic surgery, the work space is lim-
ited precisely. The mechanical structure and the electrical
characteristics can be additional constraint boundaries for
system inputs and outputs. Therefore, the controller of the
surgery robot has a rigid input saturation requirement. How-
ever, if input saturation occurs, the output performance of
the controlled object cannot satisfy the designed require-
ment, which can result in the decline of the closed-loop sys-
tem response. The output overshoot cannot be suppressed
well, even becoming unstable [1, 2]. This situation is prohib-
ited in a minimally invasive robotic surgery.

Many researchers investigated the input saturation prob-
lem and provided some solutions. Buckley [3] proposed an
anti-reset windup method for the integral saturation prob-
lem. The error between the controller output and object

input was used as a complementary feedback for the con-
trolled system. Hanus et al. [4] proposed the condition tech-
nique, where the controller output continuously tracks for a
new reference input and is located out of the saturation area
to avoid the saturation case. The pole-placement method was
applied to the antiwindup control, which assigns the poles of
nonlinear system in the desired disk for stable analysis in [5].
Although the variable structure antiwindup controller
showed a good performance in the integrator windup case
[6], some preset parameters were needed that were difficult
to determine because expert knowledge was required. Some
antiwindup controllers were also based on observer [7],
internal model control [8], saturation feedback control [9],
and dynamic complement [10].

The T-S fuzzy theorem, which is an important part of the
fuzzy control theorem, was proposed by Takagi and Sugeno
in 1985 [11]. It is utilized in both system stable control and
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model identification [11, 12]. Specifically, it has a good per-
formance in nonlinear system control [12]. The T-S fuzzy
model, which is the summation of the product of the T-S
fuzzy local models and their corresponding membership
functions, can approximate the nonlinear system under an
arbitrary degree of accuracy [12]. The T-S fuzzy model is
nonlinear, and its controller design is difficult. Consequently,
a procedure called parallel distributed compensation (PDC)
makes the T-S fuzzy controller design easier. PDC was pro-
posed by Wang et al. in 1995 [13]. The fuzzy sets of the
PDC controller are similar with the fuzzy model. Under each
controller rule, a controller can be designed for the local T-S
model. By summation of the product of these controllers and
their corresponding membership functions, the total control-
ler of a nonlinear system can be represented. System stability
is usually considered by the Lyapunov function. Although
PDC provides a design procedure for the T-S fuzzy control-
ler, the calculation of controller gains for global stability is
still difficult, particularly in the presence of many controller
rules. A numerical optimization method called linear matrix
inequalities (LMIs) solved this kind of problem. LMI was
defined by Willems in 1971 [14]. Neestorv and Nemirovskii
[15] proposed an interior point method, which can directly
solve the LMI convex optimization problem. LMI was first
applied to the T-S fuzzy system stabilization analysis in
[16]. In the succeeding years, LMI became the focus of
increasing number of researchers [17]. Except for a few spe-
cial cases without analytical solution, LMIs are generally effi-
cient [11]. Furthermore, the LMI toolbox software provides a
direct shortcut to the computer solution of LMIs. Because
PDC and LMIs provide a better T-S fuzzy system controller
design, they are applied in the proposed controller design
in this paper.

For the advantage of the T-S fuzzy theorem, it was
widely used to deal with the actuator saturation problem.
In [18], based on the T-S fuzzy model, a robust dissipative
controller was designed for the multiple-input multiple-
output (MIMO) system with saturated time-delay input and
parameter uncertainty. Their results show that the closed-
loop system can be stable, but the stabilization time cannot
be guaranteed. For this problem, [19, 20] provided a finite-
time control by optimal control and estimated the attraction
domain. The combination of the T-S fuzzy model and opti-
mal control show an animated controller design of a nonlin-
ear system with actuator saturation [21]. For optimal control,
Hu et al. [22] provided a useful control method for the satu-
ration system with actuator saturation based on a contrac-
tively invariant ellipsoid. This study was continued in her
work by BMIs [8]. Consequently, many researchers focused
on actuator saturation problems, where the T-S fuzzy based
controller design method was popular. The Lyapunov stabil-
ity criterion-based PDC fuzzy controller was designed for
the actuator saturation system [23, 24]. Many researchers
contributed in completing this theorem [25, 26]. In this
paper, the result in Hu et al. [22] was adopted and rebuilt
into a set of LMIs. Meanwhile, a predetermined H∞ norm
was satisfied.

This paper is organized as follows. The basic T-S fuzzy
theorem is presented in Section 2. The proposed solution
for the actuator saturation problem is presented in Section

3. The simulation is presented in Section 4. The paper con-
cludes in Section 5.

2. General T-S Fuzzy Model and Control

In this paper, the considered nonlinear system with distur-
bance W t is

X t = f X t + g X t U t +W t , 1

where X t ∈ Rn×1, f X t ∈ Rn×1, g X t ∈ Rn×m, U t ∈
Rm×1, and W t ≤Wb and Wb is the boundary of distur-
bance. In the T-S fuzzy model, the premise variables of the
T-S fuzzy rules must be measurable, and they can represent
some properties of the nonlinear system. Therefore, a suit-
able selection of these variables is very important for the
accuracy and reliability of the T-S fuzzy model. When the
T-S fuzzy premise variables have been defined, a corre-
sponding local model can be provided by these variable
values. The ith rule of the T-S fuzzy system for a nonlinear
system is as follows:

The ith rule: If z1 t is Mi1, …, and zp t is Mip, then

X t = AiX t + BiU t , 2

where i = 1, 2,… , L is the rule number, Ai ∈ Rn×n and Bi ∈
Rn×m are the local model parameter matrices, z1, z2,… , zp
are the premise variables, andMi1,… ,Mip are the fuzzy sets.
The nonlinear system can be approximated by the overall T-S
fuzzy system

X t = 〠
L

i=1
hi Z t AiX t + BiU t , 3

where Z t = z1 t z2 t ⋯ zp t and hi Z t = μi Z t /
∑L

i=1μi Z t , μi Z t =∏p
j=1θij z j t in which θij Z t is

the grade of the membership of zj t in Mij. Note that the
membership function should satisfy the following equation:

hi Z t ≥ 0,

〠
L

i=1
hi Z t = 1

4

Currently, the nonlinear system of (1) is changed to the
T-S fuzzy model (3). Because the local T-S model of (2) is
linear, its feedback controller can be designed easily as

Uj = KjX t , 5

whereKj ∈ Rm×n and j = 1, 2,… , L. By PDC and similar fuzzy
rules of (2), the overall T-S fuzzy controller is designed as

U t = 〠
L

j=1
hj Z t K jX t 6
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3. H
∞

Robust Controller Design for Input
Saturation

The traditional T-S fuzzy theorem cannot provide results in
the control problem for a nonlinear system with input satura-
tion. In this study, the proposed method can solve the input
saturation problem. The controlled closed-loop system can
be uniformly ultimately bounded (UUB) stable, and the pre-
scribedH-infinity norm can be guaranteed. Furthermore, the
result is shown in LMIs, which can be directly solved by
programming.

Considering the saturation and uncertainty, the nonlin-
ear system of (1) can be

X t = f X t + g X t ⋅ Sat U t +W t , 7

where

Sat U t =
sgn U t ⋅ b,   U t > b,
U t ,   U t ≤ b,

8

b > 0, is the boundary value of the saturation function, and
the other symbols are similar with (1). Following (3), the
T-S fuzzy model can be

X t = 〠
L

i=1
hi AiX t + BiSat U t , 9

where

U t = 〠
L

j=1
hj Z t U j t 10

Based on the work of Hu et al. [1], for the feedback con-
troller, U j t = KjX t , if the ellipsoid ε P, 1 is contractively
invariant, and matrixes P > 0,Ki, andH (m × nmatrix) make
the initial value of X0 ∈ ε P, 1 and

ε P, 1 ⊂ ℓ H , 11

where the polyhedron ℓ H ≔ X t ∈ Rn HjX t ≤ 1, j ∈
1,m and Hj is the jth row of H. The saturation feedback
controller Sat U t satisfies

Sat Uj t = Sat KjX t ∈ co
DrK jX t +D−

r H jX t , r ∈ 1, 2m ,
12

where Dr is an m-by-m diagonal matrix (diagonal elements
are 0 or 1) and D−

r = I −Dr with r ∈ 1, 2m .
If it is only applied to the T-S fuzzy local model, the

global stability of the nonlinear system cannot be satisfied.
For global stability, some changes are needed. By (7) and
(9), the nonlinear system with disturbance is as follows:

X t = f X t + g X t Sat U t +W t

= 〠
L

i=1
hi Z t ⋅ AiX t + BiSat U t + f X t

− 〠
L

i=1
hi Z t Ai ⋅ X t

+ g X t − 〠
L

i=1
hi Z t Bi Sat U t +W t

13

Equation (12) can be guaranteed if each Dr satisfies the
following inequality:

X ≤ 〠
L

i=1
hi Z t AiX t + Bi 〠

L

j=1
hj Z t DrK jX t +D−

r HjX t

+ f X t − 〠
L

i=1
hi Z t AiX t

+ g X t − 〠
L

i=1
hi Z t Bi

· 〠
L

j=1
hj Z t DrK jX t +D−

r H jX t +W t

= 〠
L

i=1
〠
L

j=1
hi Z t hj Z t Ai + Bi DrK j +D−

r Hj X t

+ Δf + Δg +W t ,
14

where

Δf = f X t − 〠
L

i=1
hi Z t AiX t ,

Δg = 〠
L

i=1
hi Z t 〠

L

j=1
hj Z t g X t − Bi

⋅ DrK j +D−
r Hj X t

15

Some δAi ≤ 1, δBi ≤ 1, At , and Bt can be found and
satisfy the following inequality:

Δf = 〠
L

i=1
hi Z t ΔAiX t ≤ 〠

L

i=1
hi Z t δAiAtX t

≤ AtX t ,

Δg ≤ 〠
L

j=1
hj Z t Bt DrK j +D−

r Hj X t ,

16

where ΔAi = δAiAt and ΔBi = δBiBt .
H∞ control performance is defined as

t f
0 X

T t QX t dt
t f
0 W

T t W t dt
< ρ, 17
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where t f is the terminal time, Q is a positive-definite matrix,
and ρ is the prescribedH∞ norm, which is greater than 0 and
less than 1. If ρ is minimized, the effect of W t on X t is
minimized. Considering the initial condition, (17) can be
changed as

t f

0
XT t QX t dt < XT 0 PX 0 + ρ

t f

0
WT t W t dt, 18

whereP is some symmetric positive-definiteweightingmatrix.
Set the Lyapunov function as

V t = XT t PX t , 19

where P > 0. For simplicity, (t) is omitted in the following
sections. Then, the following theorem can be obtained.

Theorem 1. Under condition (11), if controller (12) is applied
to a nonlinear system (7) and there exists a positive-definite
matrix P > 0, such that the following matrix inequalities

PAi + AT
i P + PBi DrK j +D−

r Hj + DrK j +D−
r Hj

T

⋅ Bi
TP + At

TAt + DrK j +D−
r Hj

TBt
TBt DrK j +D−

r Hj

+ 2PP + ρ−2PP +Qi < 0
20

are satisfied for each i, j, and r, then the closed-loop system is
UUB, and the H∞ control performance (18) is guaranteed as
prescribed ρ2.

Proof 1. Using (14), the derivative of V t is

V t = XTPX + X
T
PX = XTP 〠

l

I=1
hi AiX + BiSat U +W

+ 〠
l

i=1
hi AiX + BiSat U +W

T

PX ≤ XTP

〠
L

i=1
〠
L

j=1
hihj Ai + Bi DrK j +D−

r H j X + Δf + Δg +W

+ 〠
L

i=1
〠
L

j=1
hihj Ai + Bi DrK j +D−

r Hj X + Δf + Δg +W

T

PX ≤ 〠
L

i=1
〠
L

j=1
hihj XT P Ai + Bi DrK j +D−

r Hj

+ Ai + Bi DrK j +D−
r Hj

TP X

+ Δf T Δf + XTPPX + Δg T Δg

+ XTPPX + XTPW +WTPX

21

Using (16), (21) can be

V ≤ 〠
L

i=1
〠
L

j=1
hihj XT P Ai + Bi DrK j +D−

r H j

+ Ai + Bi DrK j +D−
r H j

TP X + AtX
T AtX

+ XTPPX + Bt DrK j +D−
r H j X

T

· Bt DrK j +D−
r H j X + XTPPX + XTPW

+WTPX

= 〠
L

i=1
〠
L

j=1
hihjX

T PAi + AT
i P + PBi DrK j +D−

r H j

+ DrK j +D−
r H j

TBi
TP + At

TAt + DrK j +D−
r H j

T

⋅ Bt
TBt DrK j +D−

r H j + 2PP X − ρ−1PX − ρW
T

· ρ−1PX − ρW + ρ2WTW + ρ−2XTPPX

≤ 〠
L

i=1
〠
L

j=1
hihjX

T PAi + AT
i P + PBi DrK j +D−

r H j

+ DrK j +D−
r H j

TBi
TP + At

TAt

+ DrK j +D−
r H j

TBt
TBt ⋅ DrK j +D−

r H j

+ +2PP X + ρ2WTW + ρ−2XTPPX

22

Under the ith rule, if there is

t f
0 X

T t hi
2Qi X t dt

t f
0 W

T t W t dt
≤

t f
0 X

T t QiX t dt
t f
0 W

T t W t dt
< ρ, 23

where Qi > 0 and ∑L
i=1 hiQi > 0, there is

t f
0 X

T t 〠L
i=1hiQi X t dt

t f
0 W

T t W t dt
< ρ 24

for the nonlinear system. If ∑L
i=1 hiQi =Q, (24) can be the

H∞ control performance defined in (17). Therefore, for each
simulation time, the H∞ control performance defined as
(17) can be guaranteed. Then, in the total simulation, a pre-
scribed H∞ norm can be guaranteed. Meanwhile, (18) can
be as follows:

t=t f

t=0
XT 〠

L

i=1
hiQi X dt < XT 0 PX 0 + ρ

t=t f

t=0
WTW dt

25

If

PAi + AT
i P + PBi DrK j +D−

r H + DrK j +D−
r H

TBi
TP

+ At
TAt + DrK j +D−

r H
TBt

TBt DrK j +D−
r H

+ 2PP < −ρ−2PP −Qi,
26

there is
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V < 〠
L

i=1
〠
L

j=1
hihjX

T −ρ−2PP −Qi X + ρ2WTW + ρ−2XTPPX

= XT −ρ−2PP − 〠
L

i=1
hiQi X + ρ2WTW

+ ρ−2XTPPX = −XT 〠
L

i=1
hiQi X + ρ2WTW

27

By integrating (27), the following result can be obtained:

V t f −V 0 <
t=t f

t=0
−XT 〠

L

i=1
hiQi X + ρ2WTW dt

28

The Lyapunov function (19) can be 0 when the system is
stable. Therefore,

t=t f

t=0
XT 〠

L

i=1
hiQi X dt < XT 0 PX 0 + ρ2

t=t f

t=0
WTW dt

29

The above equation is the H∞ performance defined in
(25), which satisfies (18). Note that the H∞ norm is changed
to ρ2.

End of proof.

In Theorem 1, it is difficult to find the solution for (20).
Therefore, the transformation of inequality (20) into LMIs
is necessary. By setting R = P−1 and left and right multiplica-
tion of R, (20) can be

AiR + RAT
i + Bi DrK j +D−

r Hj R + R DrK j +D−
r Hj

TBi
T

+ RAt
TAtR + R DrK j +D−

r Hj
TBt

TBt DrK j +D−
r Hj R

+ 2 + ρ−2 + RQiR < 0
30

Let K̂i = Ki ⋅ R, Ĥi =Hi ⋅ R, and Q̂i = At
TAt +Qi

−1
. By

Schur complements, (30) can be changed as

A∗ Bt DrK̂ j +D−
r Ĥ j

T
R

Bt DrK̂ j +D−
r Ĥ j −I 0

R 0 −Q̂i

< 0,

31

where A∗ = AiR + RAT
i + Bi DrK̂ j +D−

r Ĥ j + DrK̂ j + D−
r ⋅

Ĥ j
TBi

T + 2 + ρ−2 I, R, K̂ j, and Ĥ j are unknown. Condition
(11) is equal to

1 Ĥik

Ĥik
T

R
≥ 0, 32

where Ĥik is the kth row of Ĥi. Therefore, the following the-
orem is given.

Theorem 2. For nonlinear system (7) with controller (12), if
there exists

min  ρ2,

subject to 
A∗ Bt DrK̂ j +D−

r Ĥ j
T

R

Bt DrK̂ j +D−
r Ĥ j −I 0

R 0 −Q̂i

< 0,

1 Ĥik

Ĥik
T

R
≥ 0,

R > 0,

33

then the closed-loop system is UUB and theH∞ control perfor-
mance (18) is guaranteed as prescribed ρ2.

By this theorem, the H∞ optimization problem can be
changed to a constrained optimization problem by LMIs.

Figure 1: Novint Falcon.

Touch point

Motion
platform

�휃3i �휃2i

�휃1i

yc

a

z

x

b

Figure 2: Mathematical model of the single chain.

5Journal of Sensors



www.manaraa.com

4. Numerical Example

In minimally invasive surgery, haptic tracking is very impor-
tant. Novint Falcon is a simple arm robot with force feedback
ability, which benefited from parallel architecture, and can be
applied in minimally invasive surgery. The Novint Falcon
structure is shown in Figure 1.

The Novint Falcon consists of the base, motion platform,
and 3 chains. The single chain can be abstract presented in
Figure 2.

Based on [27] and ignoring some nonessentials, the ith
chain dynamic equation is

τ =D θ θ +H θ, θ θ +G θ , 34

where τ = τ1, τ2, τ3 T is the moment of driving force for each

link; θ = θ1i, θ2i, θ3i T is shown in Figure 2; D θ = IT +
JT

−1 3mb +mc J−1, where IT is the moment of inertia and

mb and mc are masses of links b and c; H θ, θ =Df +
JT

−1 3mb +mc JT
−1 ′, where Df denotes the damped

coefficient; G θ = −Mg is the gravity moment;

J =
J11 J12 J13

J21 J22 J23

J31 J32 J33

−1
α1 0 0
0 α2 0
0 0 α3

35

is the Jacobian matrix; Ji1 = cos θ2i sin θ3i cos ϕi − cos θ3i
sin ϕi , Ji2 = cos θ3i cos ϕi + cos θ2i sin θ3i sin ϕi , Ji3 =
sin θ2i sin θ3i , αi = sin θ2i − θ1i sin θ3i , and ϕ are the angle
between the chain and the coordinate frame (x, y, z). Because
the exact parameters are difficult to determine, set IT andMg
as identity matrices and 3mb +mc = 1 in this example. This is
reasonable in this paper because the error between the actual

value and the required value can be distributed in the distur-
bance or parameter uncertainty for this system. Therefore,
the matrix D θ is invertible. Set θ1i = x1 t , θ2i = x2 t ,
θ3i = x3 t , τ = u t , and

x1 t = x4 t ,
x2 t = x5 t ,
x3 t = x6 t

36

The θ of the other chains are set to be closed to require
values, and the errors are distributed in the disturbance.
Therefore, the system (34) can be as follows:

x4 t

x5 t

x6 t

= A

x4 t

x5 t

x6 t

+ Bu t + E, 37

where A = −D θ −1H θ, θ , B =D θ −1, and E = −D θ −1

G θ . Considering actuator saturation, the corresponding
ith fuzzy rule is as follows:

Rule i. If A is Ai and B is Bi, then (37) is

x4 t

x5 t

x6 t

= Ai

x4 t

x5 t

x6 t

+ BiSat u t , 38

whereA1= A max θ1i , max θ2i , max θ3i ,A2=A min θ1i ,
max θ2i , max θ3i , A3 = A max θ1i , min θ2i , max θ3i ,
A4 = A max θ1i , max θ2i , min θ3i , A5 = A min θ1i , min
θ2i , max θ3i , A6= A min θ1i , max θ2i , min θ3i , A7=
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Controlled by the proposed method of this paper
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0
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Time (s)
0 1 2 3 4 5 6 7 8

Figure 3: The error of x1.
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A max θ1i , min θ2i , min θ3i , and A8 = A min θ1i , min
θ2i , min θ3i ; Bi is calculated similarly, and E is treated
as a disturbance. Although Ai depends on θ, the values of
max θ and min θ do not depend on the system input.
Therefore, they can be used for the fuzzy rule definition. Set
θ1i ∈ 0, 0 7854 , θ2i ∈ 0, 0 7854 , and θ3i ∈ 1 9199, 2 2689 .

Sat u t = sgn u t ⋅min u t , 10 . The H∞ norm is
0.3. The reference value is

x1r x2r x3r x4r x5r x6r = 0 7 0 7 2 2 0 0 0 39

Using Theorem 2, the error system feedback controller
gains can be calculated as follows:

To test the robustness of the controller, a disturbance

W t = sin 12t
3 0 0

T

41

is added in (38). For comparison, a controller designed by The-
orem 2 of [18] is applied. In [18], the controller was designed
for the systemwith input saturation anddisturbance. If the time
delay is ignored in [18], its results can be applied in this exam-
ple. The simulation results are shown in the following figures.

From Figures 3–5, less overshooting can be observed
compared with the reference paper. The proposed controller
performed well with input saturation, and the H∞ perfor-
mance can be achieved.

5. Conclusion

In this paper, the T-S fuzzy control theorem and the ability of
contractively invariant ellipsoid were applied for nonlinear
systems with input saturation. The proposed method was

Er
ro

r o
f x

2 
(r

ad
)

Er
ro

r o
f x

2 
(r

ad
)

Controlled by the proposed method of this paper

Controlled by the proposed method of the comparison paper

Time (s)
0 1 2 3 4 5 6 7 8

Time (s)
0 1 2 3 4 5 6 7 8

0.2

0

−0.2

−0.4

−0.6

−0.8

0.2

0

−0.2

−0.4

−0.6

−0.8

Figure 4: The error of x2.

K1 = −2 9 × 104, −1 8 × 105, 2 6 × 104 ; 3 0 × 104, 6 5 × 104, −3 4 × 104 ; −7 9 × 102, 1 2 × 105, 7 7 × 103 ,

K2 = 1 8 × 104, 1 6 × 105, −1 4 × 104 ; −1 8 × 104, −3 2 × 104, 2 1 × 104 ; −1 2 × 102, −1 3 × 105, −6 9 × 103 ,

K3 = −3 8 × 104, −4 7 × 105, 2 2 × 104 ; 1 4 × 104, 1 1 × 105, −1 2 × 104 ; 2 4 × 104, 3 6 × 105, −1 1 × 104 ,

K4 = 1 9 × 104, 2 9 × 105, −7 6 × 103 ; −1 7 × 104, 2 2 × 103, 2 2 × 104 ; −1 4 × 103, −2 9 × 105, −1 4 × 104 ,

K5 = −2 0 × 104, −2 4 × 105, 1 2 × 104 ; 9 7 × 103, 5 1 × 104, −9 5 × 103 ; 9 8 × 103, 1 8 × 105, −2 1 × 103 ,

K6 = 8 4 × 103, 1 3 × 105, −3 6 × 103 ; −7 5 × 103, −3 2 × 103, 9 3 × 103 ; −9 1 × 102, −1 2 × 105, −5 7 × 103 ,

K7 = −1 9 × 103, −3 0 × 105, −1 4 × 104 ; 4 4 × 103, −1 1 × 105, −1 1 × 104 ; −2 4 × 103, 4 0 × 105, 2 5 × 104 ,

K8 = 9 2 × 102, 6 5 × 104, 2 4 × 103 ; −2 1 × 103, 1 9 × 104, 3 6 × 103 ; 1 1 × 103, −8 4 × 104, −6 0 × 103

40
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described by LMIs, which can be calculated by a computer.
The proposed theorem was tested using the Novint Falcon,
and a good result was achieved. Comparing the results, the
proposed method of this paper has given a better result.
Meanwhile, the prescribed H-infinity norm was satisfied. In
the example, only eight rules of the T-S fuzzy system were
applied; there were still more than one hundred LMIs that
need to be calculated. Although a feasible solution of the
LMIs can be guaranteed using the proposed method, a
method with less LMIs is still necessary for further study.
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